Fast Monte Carlo Localization of AUV Using Acoustic Range Measurement

Sajad Saeedi, Mae Seto, and Howard Li
Collaboration Based Robotics and Automation
Electrical and Computer Engineering,
University of New Brunswick
http://www.unb.ca/cobra
Introduction

• A novel online nonlinear Monte Carlo algorithm for multi-sensor autonomous underwater vehicle (AUV) navigation is proposed.
• The approach integrates the global constraints of range to, and GPS position of, multiple surface vehicles and relative pose constraints arising from observations of multiple beacon boats.
• The proposed method can be used to more accurately navigate the AUV, to extend mission duration, and to avoid surfacing for GPS fixes.
Introduction

- **AUV navigation and localization techniques:**
 - Inertial/dead reckoning
 - Acoustic transponders and modems
 - Geophysical

- **Acoustic navigation techniques**
 - Ultra short baseline (USBL)
 - Short baseline (SBL)
 - Long baseline (LBL) and GPS intelligent buoys (GIBs)
 - Single fixed beacon
 - Acoustic modem
Objective

• AUV + Unmanned Surface Vehicle (ASV)
• Measurement: ASVs have GPS fixes. The AUV has magnetometers and acoustic sensors.
• Objective: the pose uncertainty of the AUV is reduced using acoustic ranging (beacon ASC) and onboard magnetometers and AUV motion.
Localization Using ASC Beacons

- ASVs
- AUV
- GPS

- PF: address the nonlinearity of the AUV motion
- EKF: used for the range estimation
Proposed Method

• The posterior over the pose of the AUV
 \[\prod_{n=1}^{N} p(r_n|z_{1:t}, x_{1:t}, x_0) p(x_{1:t}|z_{1:t}, u_{1:t}) \]

• \(r_n \): Range of the Nth beacon

• \(x_{1:t} \): pose, \(u_{1:t} \): control

• \(p(x_{1:t}|z_{1:t}, u_{1:t}) \) is estimated by a PF

• \(p(r_n|z_{1:t}, x_{1:t}, x_0) \) is estimated by an EKF
Proposed Method

- Each particle:

\[
<x_{1:t}, \mu_1^{[i]}, \Sigma_1^{[i]}, \mu_2^{[i]}, \Sigma_2^{[i]}, \ldots, \mu_N^{[i]}, \Sigma_N^{[i]}>
\]

- The proposed algorithms is a particle filter of many EKFs
Proposed Method

- The particle filter is used to estimate the pose $x(t)$ of the AUV;
- The EKF is used to estimate the range measurement.
 - μ and Σ are the mean and variance of the beacon boat.
 - $\mu_1^{[i]}, \Sigma_1^{[i]}, \mu_2^{[i]}, \Sigma_2^{[i]}, \ldots, \mu_N^{[i]}, \Sigma_N^{[i]}$
 - $[i]$: particle ID, N: number of beacons
 - μ and Σ of each beacon are updated using the EKF;
Proposed Method

• The innovation is based on range measurement y and predicted range: $r = \sqrt{dx^2 + dy^2}$;

• Sp (updated variance) and Q (acoustic ranging uncertainty) of all beacons are then used for importance sampling to select more favored particles that represent both the pose $x(t)$ and corresponding range measurement y. Then corresponding μ and Σ of all beacons of each favored particle are also selected.
Proposed Method

• Complexity:
 N: number of beacons
 M: number of particles

• Proposed method:
 - EKF with a large multivariate state vector: $O(M \log(N))$
 - simple particle filter: $O(M^N)$
Result

• Simulation results
Result

Particle Filter and EKF Localization Measurements
Result

- The bounded localization error
Conclusion

• a Monte Carlo method for on-board AUV navigation using acoustic ranges transmitted from multiple autonomous surface vehicles.

• The approach reduces localization uncertainty while maintaining computational efficiency, which allows for operation in real-time for underwater missions.
Future work - In Water Trials
Thank you!