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Abstract— In sliding mode control, the less is the reaching 
time to the switching surface, the more robust is the system. In 
this paper, a systematic control strategy based on the optimal 
methods has been designed to extract a rotation rule for the 
sliding surface. Optimality and robustness of the designed 
controller against disturbance and variations has been shown 
via simulation results. 
 

I. INTRODUCTION 

enerally, in the design of sliding mode controllers, the 
following main steps should be done: 1) the 

determination of a sliding surface that shows the desired 
stable dynamics and depends on the system type, 2) the 
extraction of a control rule that guarantees the reaching 
condition, and 3) the sliding condition. Beginning from the 
initial conditions, reaching to the desired states, the phase 
trajectory of a sliding mode system has two distinguished 
modes [1]. First the trajectories, starting from their initial 
states off the sliding surface, move towards the sliding 
surface. This phase is known as the reaching phase and in 
this mode the system is sensitive to parameter variations. 
Then after hitting to the sliding surface, the sliding phase 
starts. In this phase the trajectories are insensitive to 
parameter variations and disturbances [2]. Therefore, 
various methods have been suggested to eliminate or reduce 
the system sensitivity by minimizing or even removing the 
reaching phase [3]. 
      An improved sliding surface design method for better 
controller performance is to deploy time-varying linear 
sliding surfaces instead of constant surfaces of classical 
methods. The linear sliding surface can be moved by 
rotating in such a direction that the tracking behavior can be 
improved. 

Hence having the sliding phase and robust behavior from 
early beginning, the reaching phase can be eliminated or 
reduced. The initial value of the sliding surface should be 
designed such that it includes the initial states of the system 
or if not possible, closer to initial states and the final value 
should be designed based on system characteristics. 

There are several methods that try to reduce reaching 
phase, even using intelligent neuro-fuzzy methods. In [5] a 
general method has been introduced, in this method some 
parameters are designed based on system and design 
requirements. In [6] a mediating approach has been 
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introduced in which, initial tracking signal is changed to fit 
to the system initial values. The tracking signal gradually 
tends to its ideal state to have a perfect sliding phase. 
 

II. OPTIMAL CONTROL SURFACE DESIGN 

 
In this design approach, the main idea is to use error 

dynamics to design an optimal sliding surface. Sliding 
surface start to rotate from the given initial value to stop 
rotating on reaching to the final value of the sliding surface, 
but it rotates in such a way that the error dynamics keeps the 
minimum value based on a given criterion. 

Here the design is explained for a second order system of: 
)())(()( tutxftx   

Where )(tu  is the control input, )(tx  is the (scalar) output 

of interest, and the dynamics ))(( txf  is not exactly known, 

but estimated as ))((ˆ txf . The estimation error is assumed to 

be bounded by some known function ),( xxFF  , i.e.  

Ftxftxftxftxf  ))((,))(())(())((


 

The output should track a known reference signal )(txr .  

According to design principles [4], using the sign function, 
the sliding surface and the control signal will be:  

)()()( tetets  

))(sgn()()())((ˆ)( tsqtxtetxftu r    

Where  
)()()( txtxte r , )(t is the positive sliding surface slope 

and q  is a positive scalar that is bigger than F  to guarantee 

system stability.  
Applying the control signal to the main system, we will have 
following error dynamic: 

))()(sgn())(()()( teteqtxftete     

This dynamic can be interpreted as mentioned in Fig.1, error 
dynamics are used to design optimal sliding surface. 
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Fig. 1.  General Design Scheme 
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Supposing that initial value of   is such that sliding starts 
on the sliding surface, and then in the theory we will have: 

0)()(  tete   

Now the target is to design )(t , such that the following 

performance index could be minimized: 
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In which T is the reaching time to the sliding surface that 
can be fixed or free. This design can be applied to robotics, 
welding of metallic surfaces with welding robots where 
optimal design is important. 
Solving the above mentioned equation we will have  
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Where a  is the initial value ( )0()0( eaa m   ). 

Besides )(t , can have final fixed value of 
p  and initial 

value of m . Now the new problem can be defined that a 

continues function of )(t  with given border values should 

be designed such that the following functional could be 
minimized: 
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Intuitively, there should be an answer to the problem 

because two terms of )(1 2 t and 
t

dtt
e 0

)(2 
have opposite 

growth by passing the time. In order to simplify the problem, 
the following variable is introduced: 
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Hence the functional is: 
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Considering ))((22 ))(1( ctvetvg    and using famous 

Euler equation for optimization [7], 0)(  

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will have the following equation: 
1)()( 2  tvtv   

Or equivalently: 

1)()( 2  tt   
And this equation results in: 
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Where by applying initial value,   is: 
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and by applying final value, T  or reaching time is: 
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Supposing 2m and 20p , in Fig.2, )(t has been 

depicted, (  is 3 and T is 0.4993). The only important note 
in using this method is that due to discontinuity of )(t  in 

its root point, the design of 
p should be such that before 

)(t  reaches to the root point, it should have reached to the 

p and hence avoiding functional problem. In Fig.2, the 

design of p is such that root point is after reaching time (T) 

and it is not depicted in Fig.2, because )(t has already 

reached to its final value. 

III. SIMULATION 

In order to simulate the control performance, the 
following benchmark system has been used [4] 

)())(3cos()()( 2 tutxxtatx    
Where )(ta  is considered to be unknown but verifies: 

2)(1  ta  
In the simulations )(ta  is: 

1)sin()(  tta  

2m  that fits to the initial values of the system, 20p  
that is design criterion. 
Sampling rate is 1K and T as the reaching time to the final 
goal sliding surface ( 20p ) is 0.499 second.   

Fig.3 shows the system states and )(t  where there is a 

linear rotation in the surface: 
Performance index in this case is: 

45230.2  eJ  
Fig.4 shows the system states and )(t  where there is 

rotation in the surface with another non optimal rule, here 
the following rule is used [5]: 
 

Fig. 2.  diagram of )(t  
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where a and b are used based on experiment. 
Performance index in this case is: 

43.0634  eJ  
Finally, Fig.5 shows system states and )(t  with the 

proposed optimal solution. 
Performance index in this case is: 

40498.2  eJ  
As it is clear, in the case of optimal sliding surface, 
performance index is less than the other two cases and this 
proves its advantage via simulation. 

 

IV. CONCLUSION 

This paper was focused on optimal rotating sliding mode 
control surface design. Simulation has been done in presence 
of disturbance, and in comparison with other methods, the 
results of the rotating surface method confirm both stability 
and optimality of the proposed control method.  
 
 
 
 
 
 
 
 

 
 

 

 
3-a.Linear Rotating Sliding Surface 

 
 3-b.Linear Rotating Sliding Surface system 

Fig.3. Linear Rotating Sliding Surface 

 
4-a.Non Optimal Rotating Sliding Surface 

 
4-b. Non Optimal Rotating Sliding system 

Fig.4. Non Optimal Rotating Surface 

 
5-a. Optimal Rotating Sliding Surface 

 
5-b. Optimal Rotating Sliding system 

Fig.5. Optimal Rotating Surface 
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