
Camera Tracking on Focal-Plane Sensor-Processor
Arrays

Thomas Debrunner?1, Sajad Saeedi?1, Laurie Bose2,
Andrew J Davison1, and Paul H J Kelly1

1 Imperial College London, UK
2 University of Bristol, UK

Abstract. Focal-Plane Sensor-Processor (FPSP) Arrays are new sensors with
parallel image capturing and processing capabilities built into one device. This
design eliminates the need for image transfer and thus increases frame rate sig-
nificantly. Additionally, recent FPSP which are based on analogue technology,
consume much less power compared to conventional digital cameras. However,
implementing well-known pose estimation and camera tracking algorithms on
FPSP is a challenging problem because the processing elements on FPSP have
very limited resources. FPSP also require a different programming paradigm. ∗

This paper presents several contributions to camera tracking on FPSP, using lim-
ited instruction sets and memory available for each pixel. We demonstrate that
FPSP are able to estimate camera pose at very high-frame rates with low power
consumption and high accuracy. Simulated and real-world experiments demon-
strate the effectiveness of the proposed methods.
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1 Introduction

In modern image processing systems, an image is captured by the camera sensor first,
then it is transfered to the main memory to be processed by a CPU, GPU or some other
processing device. Data transfer incurs delays in transmission and also consumes power.
At higher frame rates, the data transmission becomes a serious bottleneck. For instance
to transfer an 8 bit, 256×256 image at 10,000 fps, a bus capable of transmitting approx-
imately 650 MB/s is required [1]. Applications such as Simultaneous Localization and
Mapping (SLAM), Convolutional Neural Networks (CNN), and Virtual Reality (VR)
are examples that benefit not only from high frame rate, but also could save resources if
they consume less energy. Dynamic Vision Sensors (DVS)s, also known as event cam-
eras, approach this problem by only reporting pixel values that changed in intensity to
the host system [2], [3]. Cellular Vision Chips, such as the ACE400 [4], ACE16K [5],
MIPA4K [6], and the various revisions of the SCAMP chip [7], [8], [9], also known
as Focal-Plane Sensor-Processor (FPSP) Arrays, introduce the concept of ‘sensing and
processing in the focal plane’. FPSP not only increase frame rate but also have the abil-
ity to reduce power consumption. However FPSP such as the recent SCAMP-5 chip [9],
which is the focus of this paper, have very limited instruction sets and local memory.
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Fig. 1: On Focal-Plane Sensor-Processor (FPSP) Arrays, image capturing
and processing is done on the focal plane chip. (left) This figure demon-
strates a screen-shot from the Apron simulator of the tiling-based camera
tracking algorithm. (right) This figure shows the ground truth, measured
tile vectors, and estimated motion of the camera. The proposed camera
tracking algorithm can run at 700 fps with 1.23 W of power consumption.

Therefore developing new applications for FPSP is generally a challenging problem,
both algorithmically and in the implementation.

In this paper, we propose a novel camera tracking algorithm which runs on FPSP.
We present a keyframing method to store images in image-plane. Then a 2DoF tracking
algorithm is explained that estimates yaw and pitch motions of the camera. Based on the
2DoF algorithm, we build a 4DoF algorithm which estimates full orientation and trans-
lation along the principal axis of the camera. The proposed camera tracking algorithm
opens up the research path to use FPSP in robotics and applications which require high
frame rate and low power consumption, such as SLAM and VR. Fig. 1 demonstrates
a screen-shot of the algorithm developed for camera tracking. On the left, the vectors
demonstrate the ground truth (yellow), the measured tile vectors (green), as well as the
estimated motion vectors (magenta) for each of the small tiles. The aggregated results
from the tiles are used to estimate the orientation of the camera. The estimated angle
with its ground truth are on the right. Our algorithm is able to recover the 4DoF pose
of the camera accurately at very high frame rates, while consuming only (an estimated)
1.23 W of power.

1.1 Literature Review

This section briefly introduces FPSP and Visual Odometry algorithms.

Focal-Plane Sensor-Processor (FPSP) Arrays Programmable Focal-Plane processors
have been around for a long time. While there was theoretical interest in the topic, real
implementations of processors on image sensors did not appear until the mid 1990s.
For example, the ACE400 [4] is a CMOS chip capable of storing and processing four
binary images. It is a 20×22 processor array modeled after a Cellular Neural Network
(CNN) Universal Machine [10].

Interesting applications using the ACE400 chip were shown [11]. One applica-
tion was the detection and classification of simple objects printed on a rotating ring
at 10,000 fps. The other application involved the analysis of individual sparks from a
car spark plug. The unconventionally high frame rate allowed them to capture around
seven frames per spark to properly analyze its properties.

A different approach was taken in [12], first describing a single, analogue, sampled
current microprocessor, leading to the SCAMP vision chip [7]. Unlike the CNN based
chips [10], which use parallel, hard wired convolution templates for most operations,
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the SCAMP consists of a grid of analogue general-purpose processors operating in a
single instruction multiple data (SIMD) manner. Despite having speed disadvantages,
Dudek argues that the sequential SIMD processor is a better practical choice, due to
smaller circuit area and better achievable accuracy [13].

Multiple versions of the SCAMP chip have been implemented, starting from a very
small 21� 21 prototype [14] to the more recent256� 256array [9]. All implementations
share a very similar architecture. Our work is developed for the latest version of the chip,
the SCAMP-5. Carey et al. describe SCAMP-5 as consisting of a square array of256�
256analogue processing units (PE) along with control and readout circuitry to drive the
chip. On this chip, a single instruction stream is distributed to all processing elements
simultaneously. This means that all processing elements execute the same instruction
on their local data simultaneously. The algorithm that is performed on the system is
thus de�ned by a sequence of instruction words, issued by the system controller [9].

Visual Odometry Nister et al. coined the term Visual Odometry (VO), as an analogy
to wheel odometry. VO is the method of estimating a camera's location and pose solely
from analyzing the video feed and a known initial position and orientation. Pioneering
results were shown by Nister et al. utilizing a Random Sample Consensus (RANSAC,
[15]) approach to �lter out outliers [16]. More recent approaches in feature tracking
based algorithms and RANSAC are presented in the works by [17], implementing a VO
system for the Mars Exploration Rover. Another contribution showed an implementa-
tion of a purely incremental monocular VO system [18]. A similar approach as [19]
is followed in this paper. Another appearance-based approach was presented in [20]
utilizing the Fourier Mellin transformation for a global full frame comparison, which
was shown to be more accurate and also computationally more ef�cient than optic �ow
methods. Yet another approach was followed with [21], where an approach based on
sparse optical �ow is presented. More recently, [22] showed a real-time VO solution
that also incorporates depth information from RGB-D sensors. Event cameras, as al-
ternative capturing devices, have also been used for tracking [23], optical �ow [24],
corner detection [25], pose estimation [2], [26], [27], [28], [29], and also multi-sensor
pose estimation [30], [31]. The only other visual odeomtery paper on FPSP is the one
proposed by Bose et. al [32]. It is a 4DoF odometry algorithm, that uses image gradient
to estimate rotations and translation along optical axis.

In this paper, we adopt a tile-based approach to estimate the motion and the rigid-
body motion. This idea has been used for 3DoF motion estimation with event cameras
by Conradt [26]; however, our approach is 4DOF and also it has been applied to FPSP.

The rest of the paper is organised as follows. Sec. 2 presents the proposed pose
estimation method. Sec. 3 shows the experimental results, and 4 summarizes the paper.

2 Proposed Method
This section presents the contributions of this paper. First an approach for storing
grayscale images upon the digital registers of the FPSP is presented. Both 2DoF and
4DoF tracking algorithm are then introduced, making use of this grayscale image stor-
age for storing a keyframe to which the current image is compared to in order to deduce
camera motion. In this paper, we use left-handed coordinate system, where thez-axis
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Algorithm 1 Grayscale image storage
1: procedure ANALOGTO4BIT(analog img; R 1; R 2; R 3; R 4)
2: CLEAR (R 1; R 2; R 3; R 4) . Clear digital register content
3:
4: mov (A; analog img ) . Create of copy of the desired analog image
5: where (A ) . Select pixels for which register A> 0
6: SET (R 4) . Set the4th bit in selected pixels
7: all () . Select all pixels
8:
9: mov (A; analog img )
10: add (A; 128) . Increase the value of A by 128 in all pixels
11: W HERE (R 4) . Select pixels for which4th bit is set
12: sub(A; 128) . Decrease the value of A by 127 in selected pixels
13: all ()
14: sub(A; 64) . Decrease the value of A by 64 in all pixels
15: where (A )
16: SET (R 3) . Set the3rd bit in selected pixels
17: all ()
18:
19: mov (A; analog img )
20: add (A; 128)
21: W HERE (R 4)
22: sub(A; 128)
23: W HERE (R 3)
24: sub(A; 64)
25: all ()
26: sub(A; 32)
27: where (A )
28: SET (R 2) . Set the2nd bit in selected pixels
29: all ()
30:
31: mov (A; analog img )
32: add (A; 128)
33: W HERE (R 4)
34: sub(A; 128)
35: W HERE (R 3)
36: sub(A; 64)
37: W HERE (R 2)
38: sub(A; 32)
39: all ()
40: sub(A; 16)
41: where (A )
42: SET (R 1) . Set the1st bit in selected pixels
43: all ()
44: return R 1; R 2; R 3; R 4

is along the principle axis of the camera, x points to right, and y points up. Rotations
alongx, y, z axes are pitch, yaw, and roll. We use the order x-y-z for Euler angles.

2.1 Grayscale Image Storage on FPSP

The SCAMP-5 vision chip is a grid of 256� 256, each cell of the grid with a processing
element with 7 analog registers (AReg) and 13 1-bit digital registers (DReg). Thus,
7 different grayscale and 13 binary images can be stored and processed in-plane [9].
Content stored within ARegs decays over the course of a few seconds making them
unsuitable for storing captured grayscale images. Instead such image storage must use
the DRegs. A single digital register “plane” can store a binary image at full 256� 256
resolution. By combiningN such binary images, anN bit approximation of a grayscale
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Algorithm 2 Grayscale image retrieval
1: procedure 4BITTOANALOG(analog img; R 1; R 2; R 3; R 4)
2: mov (analog img; � 128) . Move -128 into analogimg in all pixels
3:
4: R 0 = AND (R 1; R 2; R 3; R 4)
5: where (R 0) . Select pixels storing value 16 (i.e. where1st ,2nd ,3rd and4th bits are set)
6: mov (analog img; 128) . Move the value of 128 into analogimg for selected pixels
7: all ()
8:
9: R 0 = AND (NOT (R 1) ; R 2; R 3; R 4)
10: where (R 0) . Select pixels storing value 15
11: mov (analog img; 112) . Move the value of 112 into analogimg for selected pixels
12: all ()
13:
14: R 0 = AND (R 1; NOT (R 2) ; R 3; R 4)
15: where (R 0) . Select pixels storing value 14
16: mov (analog img; 92)
17: all ()
18: :::
19:
20: :::
21: R 0 = AND (R 1; NOT (R 2) ; NOT (R 3) ; NOT (R 4))
22: where (R 0) . Select pixels storing value 1
23: mov (analog img; 16)
24: all ()
25: return analog img

image can be stored acrossN digital register planes. In this work we use four digital
registers within each pixel for storing a 4-bit grayscale image used as a keyframe by
the odometry algorithm. This involves both the process of extracting a 4-bit digital
representation from an analog grayscale image, and the process of reconstructing an
analog grayscale image from the data stored in the four digital registers.

Algorithm 1 is used to convert a captured image stored in an analog register plane,
to a 4bit digital image. TheR1, R2, R3 and R4 digital registers of each pixel are
used to store the converted image, each storing a single bit of the 4 bit value, with the
most signi�cant bit being stored inR4 through to the least signi�cant inR1. Accord-
ingly Algorithm 2 outlines the process used to reconstruct a grayscale image within
a given analogue register from the data stored across the four digital register planes
R1; R2; R3; R4. Fig. 2 illustrates this conversion process, comparing the original cap-
tured analogue image to its reconstructed 4 bit approximation along with the content of
theR1, R2, R3 andR4 registers used as storage.

2.2 2DoF Camera Tracking

The 2DoF camera tracking algorithm is a gradient-based algorithm similar to [32]. The
4DoF algorithm builds on top of 2DoF algorithm. The algorithm estimates pitch and

Fig. 2: Left: captured grayscale im-
age. Middle: Four digital registers
storing the 4bit representation of
the original grayscale image. Right:
Grayscale image reconstructed from
the data stored within the four digi-
tal registers.
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Fig. 3: Apparent position of a pixel after rotation. The blue and red thick lines repre-
sent the image plane before and after a rotation by� . The magenta line is the vector
pointing to a real world location. The valuesx andx 0 are the distances from the image
center (inx -direction) where we expect to �nd the real world location in both images.

yaw motions. Since we rule out translation, a pitch or yaw rotation should result in the
same apparent movement for all visible objects on the image plane. The idea of the
algorithm is to store the last keyframe in a register on the FPSP, and to capture a new
one. A new keyframe is generated when the total some of the pixel values are more
than a threshold. We assume that if the camera did rotate by a small angle between the
two frames, the new frame should essentially be equivalent to the old frame but shifted
some pixels into a certain direction. Generally, for an arbitrary yaw or pitch angles, not
all pixels in the new frame are shifted by the same offset. The images are transformed by
a homography which does in general not respect lengths and angles in the image plane;
however, this assumption can be assumed to be true for FPSP since they can capture
images at very high frame rates, and thus the motion between consecutive images are
small. Computing the sum of absolute difference between a shifted version of the new
frame and the old frame gives us a measure on how good the matching of the two frames
is. Finding motion between the frames is therefore equivalent to �nding a shift offset
that gives an alignment with the lowest sum of absolute difference value. We assume
that any motion of the camera between two frames is purely yaw and pitch motion,
according to the camera's coordinate system.

Let I ( t ) (x; y) be the pixel value of a stored image at positionx; y at timet, f be the
focal length of the camera and let the camera be free of distortions. Assume a camera
rotation of� radians (yaw) and� radians (pitch) between two consecutive frames.

Fig. 3 shows the situation in which we rotate the camera around they � axis (yaw).
A point seen at a distance ofx (along thex-axis). After the transformation, we �nd the
same point atx0 in the new image. The relation between the two points is:

x0 = f � tan(arctan
x
f

� � ); (1)

which can be reformulated to

x0 = f �
x
f � tan( � )

1 + tan( � ) x
f

: (2)

Assuming small� , and using approximationtan( � ) � � , tan( � ) x
f � 0, Eq. (2) is:

x0 � x � � � f: (3)

Eq. (3) shows that a point previously found at pixel location(x; y) should now have
moved to location(x � �f; y � �f ). If we further assume similar lighting conditions
for both frames at timet andt + 1 , we can say that for the image intensityI at timet:

�
�
� I ( t ) (x; y) � I ( t +1) (x � �f; y � �f )

�
�
� � 0 (4)
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The sum of absolute differences is de�ned as:

SAD(u; v) =
X

x

X

y

�
�
� I ( t ) (x; y) � I ( t +1) (x + u; y + v)

�
�
� (5)

Finding the camera rotation between two consecutive frames thus becomes a search
problem with the goal to minimize the cost functionSAD(u; v).

(�; � ) =
1
f

� argmin
u;v

(SAD(u; v)) (6)

With a given frequencyr , we can estimate the angular velocities as! x = r � � and
! y = r � � . The angles can then be determined using rotation matrices.

To do the optimization in Eq (6), we perform the search for the best alignment
by using a gradient descent inspired approach. We starts out withu = 0 andv = 0 ,
assuming there was no movement between the frames. The sum of absolute difference
for no movement gets stored as the initial best value. From there, we shift the current
frame one pixel in all four directions, computing the sums of absolute differences for
each direction. Note that shift operations in any direction are a very cheap operation on
FPSP. We keep the minimum value obtained as well as the direction we took to get there.
This identi�es the direction to shift the image in the next iteration, assuming we always
go into the direction which leads to the lowest immediate value. After identifying the
direction, we add the direction to the result variablesu or v and shift the current frame
in the obtained direction. We start the next iteration of the process. Again, we assume no
further movement between the current frame and the last frame. If we detect a direction
in which we can get an even lower minimal sum, we go into this direction and start the
next iteration. The process ends when we identi�ed a local minima, which manifests
itself that we get higher sums of absolute differences in all four directions. we assume
the problem to be locally convex. The process reports the (scaled) value of the angular
velocities back to the host CPU.

2.3 4DoF Camera Tracking

This section introduces a novel method to extend the 2DoF approach presented in Sec-
tion 2.2 with two additional degrees of freedom; roll andz-translation. The algorithm
is based on splitting the image into tiles, and estimating a displacement vector for each
tile. The global movement is then estimated by a regression on the measured vectors to
base vectors, which are explained next.

Approach The approach chosen for this problem splits the image intoN square tiles.
The SCAMP system allows to address pixels ef�ciently when the number of the square
tiles are powers of four. Experimentally,N = 16 tiles perform better than 4 or 64 tiles.
The algorithm estimates the displacement vector for each tile according to the gradient
descent based algorithm introduced in Section 2.2. For each of the four degrees of
freedom, we have an expectation of how the individual vectors should be aligned, if
a motion in this dimension occurs. This vectors are called base vectors. Fig. 4 shows
the base vectors for each tile, for each motion. The algorithm then uses a statistical
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Fig. 4: Base vectors for each tile given a certain
mode of motion between two frames. Any le-
gal motion the camera experiences between two
frames is assumed to appear as a linear combina-
tion of these vectors, according to Eq. (12).

method, to match the 16 measured displacement vectors to a linear combination of the
base vectors. Unlike in Section 2.2, we can not expect the same approximate apparent
movements of pixels in the whole image plane. Instead, this assumption is reduced to
only hold for individual tiles. For each tile, we compute the[u; v] vector according to
Eq. (6), referred to as `measurement'. These measurements are then used to estimate
the motion as follows.

Let m be the measured apparent motion vector components found in each tile.

m =
�
u1 v1 u2 v2 : : : u16 v16

� T
; (7)

whereui andvi are the measurement vectors for tilei , i = 1 ::N , u1 andv1 are the
vectors of the top right tile, andu16 andv16 are the vectors of the bottom left tile. Let
byaw , bpitch , b roll , andbz be the vectors in the same form asm, but normalized with
the components of their corresponding base vector �eld. The resulting normalizedb
vectors are:

bpitch = 1
4 [ 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1]T ; (8)

byaw = 1
4 [ 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0]T ; (9)

b roll = 1
4

p
10

[ 3 -3 3 -1 3 1 3 3 1 -3 1 -1 1 1 1 3 -1 -3 -1 -1 -1 1 -1 3 -3 -3 -3 -1 -3 1 -3 3]T ; (10)

bz = 1
4

p
10

[ -3 -3 -1 -3 1 -3 3 -3 -3 -1 -1 -1 1 -1 3 -1 -3 1 -1 1 1 1 3 1 -3 3 -1 3 1 3 3 3]T : (11)

Pitch and yaw base vectors are the same for every partitioning of the image, except
that their normalizer are different. The base vectors for thez motion are uniformly
expanding form the center of the image with their lengths being proportional to the
displacement of their tile center and center of the image. The roll base vector for each
tile is orthogonal to thez base vector. Based on the four base vector �elds, the model is

m � (� � byaw + � � bpitch +  � b roll + � � bz ) = � ; (12)

with � being the error we encounter in our estimate. The objective is to minimize� , by
choosing proper� , � ,  , and� values. The intuition behind this model is that it de-
scribes a way to linearly decompose the measuredm vector into a linear combination
of the knownb vectors. The parameters�; �; ; � from the linear combination are then
the scaled, angular velocities in their respective direction. The presented form is equiv-
alent to a standard generalized linear regression problem, for which there exist multiple
solution strategies.

OLS solution A solution to the problem is the Ordinary Least Squares (OLS) approach.
This approach requires us to assume, that the error on the estimates follows a Gaussian
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